It is increasingly useful to develop bifunctional catalysts for oxygen reduction and oxygen evolution reaction (ORR and OER) for fuel cells, metal-air rechargeable batteries, and unitized regenerative cells. Here, based on the excellent conductivity and stability of ordered mesoporous carbons, and the best ORR and OER activity of Co3O4, the composite Co3O4/N-HNMK-3 was designed and manufactured by means of a solvothermal method, using ordered N-doped mesoporous carbon (N-HNMK-3) as substrate, and then the bifunctional electrocatalytic performance corresponding to ORR, OER in alkaline media was carefully investigated. The results showed that Co3O4/N-HNMK-3 composite, a non-precious metal centered electrocatalyst, displayed excellent ORR performance (activity, selectivity, and stability) close to that of commercial 20 wt.% Pt/C and a promising OER activity near 20 wt.% RuO2/C. The outstanding bifunctional activities of Co3O4/N-HNMK-3 was assessed with the lowest △E value of 0.86 V (EOER,10 mA cm−2-EORR,−3 mA cm−2) with respect to the two commercial precious metal-based electrocatalysts.