2022
DOI: 10.1214/22-ejs2035
|View full text |Cite
|
Sign up to set email alerts
|

Improved estimation in tensor regression with multiple change-points

Abstract: In this paper, we consider an estimation problem about the tensor coefficient in a tensor regression model with multiple and unknown change-points. We generalize some recent findings in five ways. First, the problem studied is more general than the one in context of a matrix parameter with multiple change-points. Second, we develop asymptotic results of the tensor estimators in the context of a tensor regression with unknown change-points. Third, we construct a class of shrinkage tensor estimators that encompa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 33 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?