HFO-1234ze(E) is introduced as a new eco-friendly gas insulating medium to substitute SF6 for medium-voltage gas insulated equipment (MV-GIE). However, there are few reports on the partial discharge (PD) induced decomposition and gaseous, solid by-products generation characteristics of HFO1234ze(E)/CO2. Herein, the PD decomposition characteristics of HFO1234ze(E)/CO2 were explored based on a needle-plate electrode that simulates the metal protrusion defect in MV-GIE. The PDIV, PRPD of HFO-1234ze(E)/CO2 under different mixing ratio, PD intensity and duration time were obtained. Meanwhile, the PD induced decomposition and generation of gaseous, solid by-products of HFO1234ze(E)/CO2 gas mixture were analyzed. A three-zone model that describes the gas-solid metal interface interaction was proposed for the first time. It is found that the increase of HFO1234ze(E) content brings superior insulation performance of the gas mixture, while the precipitation of gaseous (CF4, C2F6, CHF3, C3HF7) and solid by-products gradually aggravated. In order to avoid the negative impact of PD-induced decomposition on the insulation and service life of MV-GIE, the optimal HFO1234ze(E) content of 30% is recommended. This work provides guidance for the development of HFO1234ze(E) based MV-GIE and helps understand the solid by-products precipitation mechanism of eco-friendly gas insulating medium.