Рассматриваются особенности численной реализации решения трехмерной обратной задачи обращения полных тензорных магнитно-градиентных данных, которая моделируется системой двух трехмерных интегральных уравнений Фредгольма 1-го рода. Для решения этой некорректно поставленной задачи применяется алгоритм,
основанный на минимизации функционала А.Н. Тихонова. В качестве метода минимизации используется метод сопряженных градиентов. Выбор параметра регуляризации осуществляется в соответствии с версией обобщенного принципа невязки, в которой учитываются ошибки округления, существенные при решении задач большой размерности.
Features of numerical solution of the three-dimensional ill-posed problem devoted to the inversion of full tensor magnetic gradient data are considered. This problem is simulated by a system of two three-dimensional Fredholm integral equations of the first kind. The Tikhonov regularization is applied to solve this ill-posed problem. The conjugate gradient method is used as a minimization method. The choice of the regularization parameter is realized according to the generalized residual principle with consideration of round-off errors capable of affecting the final result of calculations significantly.