Contrast enhancement is a very important issue in image processing, pattern recognition and computer vision. Fuzzy logic based techniques perform enhancement using more detailed information of grayness of an image. However, these methods do not perform well on images taken in uncontrolled environment which pose different challenges such as illumination variation, perspective distortion and viewpoint variation. In this paper, we have worked to devise a more robust image enhancement method using fuzzy logic. We propose a novel multi scale entropy based measurement performed using fuzzy logic image processing and utilize it to define and enhance the contrast. For this purpose, we present a mathematical formula to calculate contrast using an adaptive amplification constant. Our approach uses both the local and global entropy information. We have experimented our algorithm on images from Crowd Counting UCF dataset, which contains very dense crowds and complex texture that stands in line with the challenges targeted in this paper. The results show an improved quality than original dataset images and prove that our method enhances the images with a more dynamic ranged contrast as well as better visual results.