2017
DOI: 10.1515/eletel-2017-0033
|View full text |Cite
|
Sign up to set email alerts
|

Improved Gaussian Mixture Probability Hypothesis Density for Tracking Closely Spaced Targets

Abstract: Abstract-Probability hypothesis density (PHD) filter is a suboptimal Bayesian multi-target filter based on random finite set. The Gaussian mixture PHD filter is an analytic solution to the PHD filter for linear Gaussian multi-target models. However, when targets move near each other, the GM-PHD filter cannot correctly estimate the number of targets and their states. To solve the problem, a novel reweighting scheme for closely spaced targets is proposed under the framework of the GM-PHD filter, which can be abl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 13 publications
0
0
0
Order By: Relevance