Abstract:In response to the challenges posed by the nonlinearity, instability, and complexity of the stock market in the insurance industry, we propose an enhanced generative adversarial neural network-based stock prediction model termed CAL-WGAN-GP. The model's generator incorporates components such as the CNN-BiLSTM model and a self-attention mechanism, employed to generate precise predictions for stock closing prices. The discriminator, comprising a multi-layer convolutional neural network, is tasked with distinguis… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.