The high dimensionality of hyperspectral images (HSIs) brings significant redundancy to data processing. Band selection (BS) is one of the most commonly used dimensionality reduction (DR) techniques, which eliminates redundant information between bands while retaining a subset of bands with a high information content and low noise. The wild horse optimizer (WHO) is a novel metaheuristic algorithm widely used for its efficient search performance, yet it tends to become trapped in local optima during later iterations. To address these issues, an enhanced wild horse optimizer (IBSWHO) is proposed for HSI band selection in this paper. IBSWHO utilizes Sobol sequences to initialize the population, thereby increasing population diversity. It incorporates Cauchy mutation to perturb the population with a certain probability, enhancing the global search capability and avoiding local optima. Additionally, dynamic random search techniques are introduced to improve the algorithm search efficiency and expand the search space. The convergence of IBSWHO is verified on commonly used nonlinear test functions and compared with state-of-the-art optimization algorithms. Finally, experiments on three classic HSI datasets are conducted for HSI classification. The experimental results demonstrate that the band subset selected by IBSWHO achieves the best classification accuracy compared to conventional and state-of-the-art band selection methods, confirming the superiority of the proposed BS method.