TGN1412, a superagonistic CD28-specific antibody, was shown to require Fc-crosslinking or immobilization as a prerequisite to mediate T-cell proliferation and cytokine release in vitro. We used primary human umbilical vein endothelial cells (HUVECs) to study their ability to induce activation of TGN1412-treated T cells. We confirmed that peripheral primary human T cells do not show activation upon stimulation with soluble TGN1412 alone. Nevertheless, cocultivation of TGN1412-treated T cells with HUVECs induced T-cell activation that was further enhanced using cytokine prestimulated HUVECs. Unexpectedly, FcFc␥R interaction was dispensable for endothelial cell-mediated proliferation of TGN1412-treated T cells. Transwell-culture assays showed that TGN1412-treated T cells need direct cell-to-cell contact to HUVECs to induce proliferation. We found that costimulatory ICOS-LICOS interaction between T cells and endothelial cells is critically involved in TGN1412-mediated effects. Blocking LICOS reduced TGN1412-mediated T-cell proliferation significantly, whereas recombinant LICOS fully conferred TGN1412-mediated T-cell proliferation.
IntroductionMonoclonal antibodies (mAbs) are widely used for therapeutic applications. Although, therapeutic mAbs are potent and effective agents, they can induce severe adverse events including cytokine release syndrome (CRS), a cascade of systemic cytokine release.The first mAb approved in 1986 as a drug for humans, muromonab (orthoclone OKT3), is a murine anti-human CD3 mAb, indicated for the treatment of acute renal, steroid-resistant cardiac, or steroid-resistant hepatic allograft rejection. In particular during the first infusion, OKT3-mediated T-cell activation can induce massive cytokine release, possibly culminating in a CRS. 1,2 Currently, approximately 29 mAbs are available on the market in the European Union, including those directly influencing T-cell function.For proper T-cell activation, at least 2 signals are required: the first signal is provided by the T-cell receptor (TCR) upon recognition of antigen:MHC (major histocompatibility complex) complexes on the surface of antigen presenting cells (APCs). However, antigen alone is not sufficient to drive activation of naive T cells. To fully activate resting naive T lymphocytes, a second signal, which emerges from triggering of so called costimulatory molecules, must be provided (reviewed by Sharpe 3 ). The transmembrane CD28 homodimer is the most prominent costimulatory molecule. Its ligands B7-1 (CD80) and B7-2 (CD86) are up-regulated on APCs upon triggering of cells with danger signals derived from pathogens, such as bacteria or viruses, or upon cytokine stimulation. 4 As for signal one, triggering of CD28 alone is not capable of inducing T-cell activation, whereas simultaneous engagement of the TCR and CD28 leads to activation of resting T lymphocytes.Another important costimulatory molecule is ICOS (inducible costimulator; CD278) binding to its ligand LICOS (CD275), expressed on APCs, B cells, and endothelial cells. 5,6 H...