2012
DOI: 10.5120/8260-1800
|View full text |Cite
|
Sign up to set email alerts
|

Improved Keyword and Keyphrase Extraction from Meeting Transcripts

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 9 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…Sementara itu, analisis semantik biasanya menimbulkan ketidakjelasan dan ketidakpastian sehingga pendekatan fuzzy dapat digunakan untuk menyelesaikan masalah tersebut [14]. Dengan mengadopsi fungsi keanggotaan penerapan fuzzy mampu memperbaiki masalah ketidakpastian [15]. Untuk melakukan pencocokan dokumen, dibutuhkan kata atau kalimat acuan untuk mengetahui tingkat keterkaitan antar kata atau kalimat.…”
Section: Pendahuluanunclassified
“…Sementara itu, analisis semantik biasanya menimbulkan ketidakjelasan dan ketidakpastian sehingga pendekatan fuzzy dapat digunakan untuk menyelesaikan masalah tersebut [14]. Dengan mengadopsi fungsi keanggotaan penerapan fuzzy mampu memperbaiki masalah ketidakpastian [15]. Untuk melakukan pencocokan dokumen, dibutuhkan kata atau kalimat acuan untuk mengetahui tingkat keterkaitan antar kata atau kalimat.…”
Section: Pendahuluanunclassified
“…Most of the time, the meeting transcripts are too long, making reading and analyzing the core content infeasible; therefore, providing a framework that can extract the keywords automatically from the meeting transcripts is instrumental. Towards this end, Sheeba and Vivekanandan [224] proposed a model in which the keywords and key phrases are extracted from meeting transcripts. They claimed that the difficulty of this work is tied to the occurrence of synonyms, homonyms, hyponymy, and polysemy in the transcripts.…”
Section: Meeting Transcriptsmentioning
confidence: 99%
“…Popular methods include frequency-based unsupervised measures of importance, such as Term Frequency-Inverse Document Frequency (TF-IDF), and word co-occurrence measures (HaCohen-Kerner et al, 2005;Matsuo and Ishizuka, 2004), which are primarily used for extracting relevant keywords from text documents. Other supervised measures of word importance have been proposed (Liu et al, 2011(Liu et al, , 2004Hulth, 2003;Sheeba and Vivekanandan, 2012; for various applications. Closest to our current work, researchers in described a neural network-based model for capturing the importance of a word at the sentence level.…”
Section: Related Workmentioning
confidence: 99%