2016
DOI: 10.3233/jae-162152
|View full text |Cite
|
Sign up to set email alerts
|

Improved LLE algorithm and its application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(5 citation statements)
references
References 5 publications
0
4
0
1
Order By: Relevance
“…The local linear embedding (LLE) algorithm was first proposed by Roweis and Saul in 2000. Zhang et al. (2016) and Bai et al.…”
Section: Introductionmentioning
confidence: 93%
See 1 more Smart Citation
“…The local linear embedding (LLE) algorithm was first proposed by Roweis and Saul in 2000. Zhang et al. (2016) and Bai et al.…”
Section: Introductionmentioning
confidence: 93%
“…Moreover, the accuracy of the approach used in this paper is relevant to parameter k . According to Equation (4), the parameter k ( k = 1,2,..., T ), which is the minimum of the cost function e ( W ), can be determined as the optimal number of neighbors (Zhang et al., 2016).…”
Section: New Approach For Identifying Moving Loadsmentioning
confidence: 99%
“…Similarly, there are many nonlinear dimensionality reduction methods, such as locally linear embedding (LLE) [16,17], Laplacian eigenmaps (LE) [18], kernel PCA [19], and isometric feature mapping (Isomap) [20]. Bai et al proposed an LLE-based OMA method for three-dimensional structures [21], Zhang et al optimized the nearest neighbor selection method for LLE-based OMA [22], Dong et al introduced modal identification and influence factors of LLE algorithm [23], and Guan et al made comprehensive and systematic comparisons of four statistical learning algorithms (PCA, ICA, SOBI, and LLE) on analyzing their performance for resolving operational modal parameters identification [24].…”
Section: Introductionmentioning
confidence: 99%
“…全局欧式结构, 无法发现内在的非线性子流形结构, 因 此这些方法不适用于高度非线性分布的数据集; 同时, 不同领域的学者 [4][5][6] 发现, 高维空间中的数据集实际是 位于或接近外部空间的一个子流形, 因而提出了许多 非线性流形学习方法, 局部线性嵌入算法(Local Linear Embedding, LLE)是其中一种, 由Roweis和Saul [7] 在 2002年提出, 该算法对高维非线性数据集进行降维时 会保留其拓扑结构, 因此, 在数据降维、机器学习和 模式识别领域成为一个热点. 根据白俊卿等人 [8] 和 Zhang等人 [9] 提出的基于LLE算法识别结构固有频率 和振型的理论, 结合适用于非平稳信号处理的希尔伯 特黄变换方法 [10,11] (Hilbert-Huang Transform, HHT),…”
unclassified