2019
DOI: 10.26637/mjm0701/0018
|View full text |Cite
|
Sign up to set email alerts
|

Improved makespan of the branch and bound solution for a fuzzy flow-shop scheduling problem using the maximization operator

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 4 publications
0
2
0
Order By: Relevance
“…In 1954, Johnson [4] developed a algorithm to solve a 2-machine flow shop problem which was a first leap towards the algorithmic approach to flow shop scheduling problems.In the literature,one could find the elaborate use of triangular and trapezoidal fuzzy numbers ( [7], [2], [3], [5]). Octagonal fuzzy numbers are also involved into active research in fuzzy flowshop scheduling by Selvamalar et al, ([8], [9], [10], [11], [12]). This paper deals with the Johnson's 2-machine flow shop problem in fuzzy environment and it has been extended to 3-machine case also under certain conditions.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…In 1954, Johnson [4] developed a algorithm to solve a 2-machine flow shop problem which was a first leap towards the algorithmic approach to flow shop scheduling problems.In the literature,one could find the elaborate use of triangular and trapezoidal fuzzy numbers ( [7], [2], [3], [5]). Octagonal fuzzy numbers are also involved into active research in fuzzy flowshop scheduling by Selvamalar et al, ([8], [9], [10], [11], [12]). This paper deals with the Johnson's 2-machine flow shop problem in fuzzy environment and it has been extended to 3-machine case also under certain conditions.…”
Section: Introductionmentioning
confidence: 99%
“…,25) (0,2,4,6,8,10,12,14) (12,14,16,18,20,22,24,26) 2 (4,6,8,10,14,16,18,20) (6,7,10,11,12,15,16,19) (5,7,9,11,13,15,17 ,19) 3 (22,24,26,28,30,32,34,36) (3,5,7,9,13,15,17,19) (16,18,20,22,24,26,28,30) 4 (29,31,33,35,37,39,41,43) (0,2 12 12 w − Divergence(Ã) = ( f − c) 8 5…”
mentioning
confidence: 99%