Development of accurate -turn (beta-turn) type prediction methods would contribute towards the prediction of the tertiary protein structure and would provide useful insights/inputs for the fold recognition and drug design. Only one existing sequence-only method is available for the prediction of beta-turn types (for type I and II) for the entire protein chains, while the proposed method allows for prediction of type I, II, IV, VII, and non-specific (NS) beta-turns, filling in the gap. The proposed predictor, which is based solely on protein sequence, is shown to provide similar performance to other sequence-only methods for prediction of beta-turns and beta-turn types. The main advantage of the proposed method is simplicity and interpretability of the underlying model. We developed novel sequence-based features that allow identifying beta-turns types and differentiating them from non-beta-turns. The features, which are based on tetrapeptides (entire beta-turns) rather than a window centered over the predicted residues as in the case of recent competing methods, provide a more biologically sound model. They include 12 features based on collocation of amino acid pairs, focusing on amino acids (Gly, Asp, and Asn) that are known to be predisposed to form beta-turns. At the same time, our model also includes features that are geared towards exclusion of non-beta-turns, which are based on amino acids known to be strongly detrimental to formation of beta-turns (Met, Ile, Leu, and Val).