Corrosion protection technologies based on waterborne paints have become increasingly popular as steel structure protection, which implies the need to determine relevant assessment methods considering the conditions of use and product-specific characteristics. This study attempts to evaluate the fitness of standard corrosion protection weathering methods and an original cyclic test for verifying the resistance of waterborne acrylic coatings to environmental conditions. Changes to the properties of artificially weathered coatings were analysed with reference to those observed during exposure in natural conditions. The degree of coating degradation after exposure to neutral salt spray and condensation humidity was determined to significantly exceed the changes observed in natural conditions. An original cyclic test caused changes in the appearance, microstructure, FT-IR spectrum and utility properties of the coatings, such as thickness, colour, hardness, adhesion and impedance, similar to those observed in the natural environment. The results confirm that the programming direction of waterborne coatings artificial weathering tests is adequate and promising.