A dynamic mirror actuator utilizing antagonistic piezoelectric stack actuators is presented for use in laser printers. Exhibiting hysteresis and other nonlinearities in open-loop operation, the dynamic mirror actuator (DMA) requires a control structure to achieve accurate mirror positioning. A linear DMA model is developed for extending operational bandwidth under closed-loop control, employing explicit piezoelectric stack actuator (PESA) charging dynamics and incorporating two modes for single input control of opposing PESA drives. Compared to constitutive models from literature, the proposed model displays a comparable fit with experimental frequency response data while retaining a lower model order. As further validation, simulated step response data are shown to agree with experimental data.