In the present work, bismuth vanadate composited photocatalysts were synthesized and characterized. X-ray diffractometry and Raman results showed that the particles were well crystallized, and formed by the complex of monoclinic BiVO4 and TiO2 . On electron microscopy, the photocatalyst exhibited high crystallization, agglutination and irregular shape, and was surrounded by numerous TiO2 particles. The study of surface areas showed that the specific surface area of 30-BiVO4 /TiO2 composited was 112 m(2) ·g(-1) , which was nearly 10 times that of pure BiVO4 . The ultraviolet-visible diffuse reflectance spectra indicated the composited photocatalyst were activated in visible light. The activity of photocatalytic water splitting was studied. The results showed that monomer BiVO4 photocatalyst was not able to produce hydrogen under any light source. BiVO4 /TiO2 composited photocatalysts, however, were capable of generating hydrogen. Under UV light irradiation for 120 min, 1 g catalyst dispersed in 50 mL deionized water produced almost 1 mL hydrogen, such that the productivity of hydrogen was higher than that of P25-TiO2 . Photocatalytic decomposition of water under visible light also confirmed that the BiVO4 /TiO2 composited photocatalyst had the ability of water splitting.