Ocean fog, a meteorological phenomenon characterized by reduced visibility due to tiny water droplets or ice particles, poses significant safety risks for maritime activities and coastal regions. Accurate prediction of ocean fog is crucial but challenging due to its complex formation mechanisms and variability. This study proposes an advanced ocean fog prediction model for the Yellow Sea region, leveraging satellite-based detection and high-performance data-driven methods. We used Himawari-8 satellite data to obtain a lot of spatiotemporal ocean fog references and employed AutoML to integrate numerical weather prediction (NWP) outputs and sea surface temperature (SST)-related variables. The model demonstrated superior performance compared to traditional NWP-based methods, achieving high performance in both quantitative—probability of detection of 81.6%, false alarm ratio of 24.4%, f1 score of 75%, and proportion correct of 79.8%—and qualitative evaluations for 1 to 6 h lead times. Key contributing variables included relative humidity, accumulated shortwave radiation, and atmospheric pressure, indicating the importance of integrating diverse data sources. The study emphasizes the potential of using satellite-derived data to improve ocean fog prediction, while also addressing the challenges of overfitting and the need for more comprehensive reference data.