2021
DOI: 10.17762/itii.v9i2.318
|View full text |Cite
|
Sign up to set email alerts
|

Improved Particle Swam Optimization for Crowd Simulation Using Hybrid Agent Reinforcement Learning Algorithm

Abstract: In an emergency route planning technique, simulating the dynamic crowd has route capacity constraints and global target of evacuating all crowd evacuees. To stimulate the crowd, the new arena is developed to know the real-time situation to face the crowd evacuation on exit point. The crowd evacuation is done with the process of Hybrid Agent Reinforcement Learning (HARL) algorithm consisting of Improved Multi-Agent Reinforcement Learning (IMARL) and State-Action-Reward-State-Action (SARSA). In the proposed work… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?