2010
DOI: 10.1016/j.engappai.2010.01.015
|View full text |Cite
|
Sign up to set email alerts
|

Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
36
0
5

Year Published

2012
2012
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 72 publications
(41 citation statements)
references
References 44 publications
0
36
0
5
Order By: Relevance
“…On the other hand, some heuristic algorithms, for example, genetic algorithm (GA) [19][20][21] and particle swarm optimization (PSO) algorithm [22,23], have also emerged in water demand-related forecasting. Without the constraint of continuity of functions, GA is characteristic of inner implicit parallelism and better global searching capability.…”
Section: Introduction Wmentioning
confidence: 99%
“…On the other hand, some heuristic algorithms, for example, genetic algorithm (GA) [19][20][21] and particle swarm optimization (PSO) algorithm [22,23], have also emerged in water demand-related forecasting. Without the constraint of continuity of functions, GA is characteristic of inner implicit parallelism and better global searching capability.…”
Section: Introduction Wmentioning
confidence: 99%
“…Particle swarm optimization (PSO) is a class of metaheuristics inspired by ethology and simulates the movements of zooids in a bird flock or fish school [1,7,20,21,[28][29][30][31][32]. In PSO, the population is termed as a swarm, and an individual is termed as a particle.…”
Section: Introductionmentioning
confidence: 99%
“…El ajuste de los parámetros supone una inversión de recursos inicial, que en ocasiones redunda en tediosas tareas de ensayo y error, sobre todo cuando no se tiene idea de qué valores utilizar para la solución de un problema concreto. En este trabajo se presenta una propuesta en la que el algoritmo PSO es capaz de autogestionar todos sus parámetros con excepción del tamaño de la población, permitiendo esto que el diseñador pueda desentenderse de estas tareas y se concentre mucho más en la parte del diseño en cuestión (Montalvo et al, 2010a).…”
Section: Comentariosunclassified
“…En este trabajo, además de utilizar el control adaptativo para el parámetro de inercia , introducido por (Kennedy y Eberhart, 1995), se propone un control auto-adaptativo para los demás parámetros (Montalvo et al, 2010a (Yao et al, 1999). El papel de  es crítico.…”
Section: Consideraciones Sobre Los Parámetros a Utilizarunclassified
See 1 more Smart Citation