This paper addresses pilot-assisted estimation of frequency-selective time-invariant channels in multicarrier Code Division Multiple Access communications systems (MC CDMA and MC DS-CDMA). Performance in terms of normalised mean square error (NMSE) is derived for two discrete channel frequency response estimators: a conventional estimator based on the minimum mean square error criterion, and an improved estimator exploiting subspace relationships between the frequency and impulse responses of the discrete channel. For MC DS-CDMA, NMSE performances of both estimators result in closedform solutions. For MC CDMA, a closed-form solution is derived for the NMSE of the conventional estimator; upper and lower bounds are provided for the NMSE of the improved estimator. Furthermore, for the particular case of identically distributed discrete channels with common arbitrary power delay profile and uncorrelated weights, a closed-form expression for the NMSE of the improved estimator is also obtained. Numerical results illustrate the accuracy of the proposed NMSE expressions.