The waterborne polyurethane (PU) prepolymer was first prepared based on isophorone diisocyanate, polyether polyol (NJ-210), dimethylol propionic acid (DMPA), and hydroxyethyl methyl acrylate via in situ method. The crosslinked waterborne polyurethane-acrylate (PUA) dispersions were prepared with the different functional crosslinkers. The chemical structures, optical transparency, and thermal properties of PU and PUA were confirmed by Fourier transform infrared spectrometry, ultraviolet-visible spectrophotometry, and differential scanning calorimetry. Some physical properties of the aqueous dispersions such as viscosity, particle size, and surface tension were measured. Some mechanical performances and solvent resistance of PUA films were systemically investigated. The experimental results showed that the particle sizes of the crosslinked PUA aqueous dispersions were larger than the PU and increased from 57.3 to 254.4 nm. When the ratios of BA/St, BA/TPGDA, and BA/TMPTA were 70/30, PUA films exhibited excellent comprehensive mechanical properties. The tensile strength and elongation at break of the film were 2.17 MPa and 197.19%. When the ratio of BA/St was 30/70, the film had excellent water resistance and was only 6.47%. The obtained PUA composites have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings, and wood finishes.