Under ballistic impact or blast loading, the high strain rate and high temperature behaviour of armour steels is key to their response to a given threat. This experimental and numerical investigation examines the tensile response of a class 4a improved rolled homogenous armour steel (IRHA) and a high hardness armour steel (HHA). Cylindrical tensile specimens were tested at a range of strain rates from 0.001 s-1 to 2700 s-1. Quasi-static, elevated temperature tests were performed from room temperature up to 300° C. While the HHA is strain rate insensitive, the IRHA displays a significant increase in strength across the range of loading rates reducing the ultimate strength difference between the materials from 19% at 0.001s-1 to 4.6% at 2700s-1. An inverse numerical modelling approach for constitutive model calibration is presented, which accurately captured the dynamic material behaviour. The modified Johnson-Cook strength and Cockcroft-Latham (C-L) fracture models were capable of predicting the ballistic limit of each material to within 5% of the experimental result and to within 10% for deformation under blast loading. The blast rupture threshold of both materials was significantly over-estimated by the C-L model suggesting stress state or strain rate effects may be reducing the ductility of armour steel under localised blast loading.