Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Sand control and sand management require a rigorous assessment of several contributing factors including the sand facies variation, fluid composition, near-wellbore velocities, interaction of the sand control with other completion tools and operational practices. A multivariate approach or risk analysis is required to consider the relative role of each parameter in the overall design for reliable and robust sand control. This paper introduces a qualitative risk factor model for this purpose. In this research, a series of Sand Retention Tests (SRT) was conducted, and results were used to formulate a set of design criteria for slotted liners. The proposed criteria specify both the slot width and density for different operational conditions and different classes of Particle Size Distribution (PSD) for the McMurray oil sands. The goal is to provide a qualitative rationale for choosing the best liner design that keeps the produced sand and skin within an acceptable level. The test is performed at several flow rates to account for different operational conditions for Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS) wells. A Traffic Light System (TLS) is adopted for presenting the design criteria in which the red and green colors are used to indicate, respectively, unacceptable and acceptable design concerning sanding and plugging. Yellow color in the TLS is also used to indicate marginal design. Testing results indicate the liner performance is affected by the near-wellbore flow velocities, geochemical composition of the produced water, PSD of the formation sand and fines content, and composition of formation clays. For low near-wellbore velocities and typical produced water composition, conservatively designed narrow slots show a similar performance compared to somewhat wider slots. However, high fluid flow velocities or unfavorable water composition results in excessive plugging of the pore space near the screen leading to significant pressure drops for narrow slots. The new design criteria suggest at low flow rates, slot widths up to three and half times of the mean grain size will result in minimal sand production. At elevated flow rates, however, this range shrinks to somewhere between one and a half to three times the mean grain size. This paper presents novel design criteria for slotted liners using the results of multi-slot coupons in SRT testing, which is deemed to be more realistic compared to the single-slot coupon experiments in the previous tests. The new design criteria consider not only certain points on the PSD curve (e.g., D50 or D70) but also the shape of the PSD curve, water cut, and gas oil ratio and other parameters.
Sand control and sand management require a rigorous assessment of several contributing factors including the sand facies variation, fluid composition, near-wellbore velocities, interaction of the sand control with other completion tools and operational practices. A multivariate approach or risk analysis is required to consider the relative role of each parameter in the overall design for reliable and robust sand control. This paper introduces a qualitative risk factor model for this purpose. In this research, a series of Sand Retention Tests (SRT) was conducted, and results were used to formulate a set of design criteria for slotted liners. The proposed criteria specify both the slot width and density for different operational conditions and different classes of Particle Size Distribution (PSD) for the McMurray oil sands. The goal is to provide a qualitative rationale for choosing the best liner design that keeps the produced sand and skin within an acceptable level. The test is performed at several flow rates to account for different operational conditions for Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS) wells. A Traffic Light System (TLS) is adopted for presenting the design criteria in which the red and green colors are used to indicate, respectively, unacceptable and acceptable design concerning sanding and plugging. Yellow color in the TLS is also used to indicate marginal design. Testing results indicate the liner performance is affected by the near-wellbore flow velocities, geochemical composition of the produced water, PSD of the formation sand and fines content, and composition of formation clays. For low near-wellbore velocities and typical produced water composition, conservatively designed narrow slots show a similar performance compared to somewhat wider slots. However, high fluid flow velocities or unfavorable water composition results in excessive plugging of the pore space near the screen leading to significant pressure drops for narrow slots. The new design criteria suggest at low flow rates, slot widths up to three and half times of the mean grain size will result in minimal sand production. At elevated flow rates, however, this range shrinks to somewhere between one and a half to three times the mean grain size. This paper presents novel design criteria for slotted liners using the results of multi-slot coupons in SRT testing, which is deemed to be more realistic compared to the single-slot coupon experiments in the previous tests. The new design criteria consider not only certain points on the PSD curve (e.g., D50 or D70) but also the shape of the PSD curve, water cut, and gas oil ratio and other parameters.
Prevention is better than cure is the right phrase to express how important sand production monitoring and surveillance to protect well integrity which consequently help securing environment, people, asset and also reputation without causing unnecessary restrictions to the production performance. This paper showcases the benefits gained from utilizing an automated Digital Integrated Operations System, or "IO" to enhance the existing Sand Monitoring and Management (SMM) workflow. Sand production will impose significant impact and key failure are mostly related to erosion and sand accumulation. Reactive management approach can be implemented in a faster manner should we have good surveillance. The IO was designed to provide critical information on the historical and current status and operating conditions of wells, production and injection equipment, as well as daily production and injection volumes based on data fed from the thousands of transmitters installed at the plant. The system is used for different applications related to production surveillance and optimization, and also includes sand management as a core module. For this purpose, it utilizes the SMM workflow by enabling visual monitoring of well sand count data and compliance to well sampling plan in the IO platform, and by performing daily computation of erosional rates together with remaining wall thickness on surface flowlines - achieved by combining live well parameters with latest sand count data, latest well test and erosion rate. Upon stringent monitoring, two (2) wells were identified by IO to be under high risk and quick action was taken to manage the risk. From IO, number of times that each well had been categorized under severity were then be validated by checking in the input data. From well monitoring and surveillance, flowing tubing head pressure (FTHP) were seen lower than trending and bean size had been fully opened. Knowing that the well is prone to be producing high amount of sand and expose to downhole integrity issue, the sand production must be controlled before it reaches to the surface. The immediate action was to choke down the well, monitor the FTHP, evaluate well test performance trending and most importantly increase the frequency of sand count. After doing so, the team observed that erosion rate has been reduced below the limit and sand count was also reduced. Simple action can be taken if we know what is the root cause in a timely manner. All this will be possible through IO. Visualization had been transparent, communication was enhanced, and collaboration boosted towards safe operation.
Sand production associated with oil and gas producers is one of the oldest problems in the industry and is typically in unconsolidated sandstone formations. The stresses caused by the fluids flowing into the wellbore are often sufficient to produce fine sand particles. Sand production may cause operational problems such as disposal of produced sand, sand erosion of downhole and surface equipment, and loss of primary containment (LOPC), which is the most important reason for controlling sand production. In actual field operation, a sand management program is usually implemented to manage sand challenges which limits to monitoring and basic analysis. The proposed sand management solution in this paper performs sensitivity analysis (known as what–if scenarios) using model–based sand erosion calculation to analyze different possible operating scenarios with the objective of preventing and minimizing sand issues. The solution also helps to minimize risks related to well, facilities and avoiding cost or production losses due to sand production. It recommends the operational settings to achieve maximum production rates while ensuring operating within safe erosion limits and without sand deposition risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.