2019
DOI: 10.1371/journal.pone.0212285
|View full text |Cite
|
Sign up to set email alerts
|

Improved scheduling algorithm for signal processing in asynchronous distributed ultrasonic total-focusing-method system

Abstract: Compared to the conventional ultrasonic phased-array system, a large-element phased-array system employing the total focusing method (TFM) can yield improved image resolution and accuracy, providing more flexible scanning methods and image merging functionality. In order to meet various forms of ultrasonic multi-group scanning, an architecture for multi-group scan integration called the “asynchronous distributed ultrasonic TFM system” is proposed, and a novel scheduling algorithm called “the sum of start time … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…Li et al [18], based on time division multiplexing, proposed an IBF algorithm for focus and delay module scheduling, which increased the maximum completion time by 8.76 to 21.48%, reduced resource consumption by 30 to 40%. Li et al [19] also proposed SSPA algorithm for heterogeneous signal processing. Compared with the FCFS algorithm and SPT algorithm, the SSPA algorithm improves bandwidth utilization by 9.72% and reduces maximum completion time by 11%.…”
Section: Introductionmentioning
confidence: 99%
“…Li et al [18], based on time division multiplexing, proposed an IBF algorithm for focus and delay module scheduling, which increased the maximum completion time by 8.76 to 21.48%, reduced resource consumption by 30 to 40%. Li et al [19] also proposed SSPA algorithm for heterogeneous signal processing. Compared with the FCFS algorithm and SPT algorithm, the SSPA algorithm improves bandwidth utilization by 9.72% and reduces maximum completion time by 11%.…”
Section: Introductionmentioning
confidence: 99%