Currently, gas chromatography is the most common analytical technique for natural gas (NG) analysis as it offers very precise results, with very low limits of detection and quantification. However, it has several drawbacks, such as low turnaround times and high cost per analysis, as well as difficulties for on-line implementation. With NG applications rising, mostly thanks to its reduced gaseous emissions in comparison with other fossil fuels, the necessity for more versatile, fast, and economic analytical methods has augmented. This work summarizes the latest advances to determine the composition and physico-chemical properties of regasified liquid natural gas, focusing on infrared spectroscopy-based techniques, as well as on data processing (chemometric techniques), necessary to obtain adequate predictions of NG properties.