This article presents a pedestrian tracking methodology using an infrared sensor for surveillance applications. A distinctive feature of this study compared to the existing pedestrian tracking approaches is that the road network information is utilized for performance enhancement. A multiple model particle filter, which uses two different motion models, is designed for enabling the tracking of both road-constrained (on-road) and unconstrained (offroad) targets. The lateral position of the pedestrians on the walkways are taken into account by a specific on-road target model. The overall framework seamlessly integrates the negative information of occlusion events into the algorithm for which the required modifications are discussed. The resulting algorithm is illustrated on real data from a field trial for different scenarios.