Abstract. For the verication of system software, information ow properties of the instruction set architecture (ISA) are essential. They show how information propagates through the processor, including sometimes opaque control registers. Thus, they can be used to guarantee that user processes cannot infer the state of privileged system components, such as secure partitions. Formal ISA models -for example for the HOL4 theorem prover -have been available for a number of years. However, little work has been published on the formal analysis of these models. In this paper, we present a general framework for proving information ow properties of a number of ISAs automatically, for example for ARM. The analysis is represented in HOL4 using a direct semantical embedding of noninterference, and does not use an explicit type system, in order to (i) minimize the trusted computing base, and to (ii) support a large degree of context-sensitivity, which is needed for the analysis. The framework determines automatically which system components are accessible at a given privilege level, guaranteeing both soundness and accuracy.