Improved Transformer-Based Deblurring of Commodity Videos in Dynamic Visual Cabinets
Shuangyi Huang,
Qianjie Liang,
Kai Xie
et al.
Abstract:In the dynamic visual cabinet, the occurrence of motion blur when consumers take out commodities will reduce the accuracy of commodity detection. Recently, although Transformer-based video deblurring networks have achieved results compared to Convolutional Neural Networks in some blurring scenarios, they are still challenging for the non-uniform blurring problem that occurs when consumers pick up the commodities, such as the problem of difficult alignment of blurred video frames of small commodities and the pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.