. (2015). Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping. Superconductor Science and Technology, 28 (5), 055005-1-055005-7.Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping
AbstractHigh performance MgB 2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB 2 grains with a high level of homogeneous carbon doping were formed in these MgB 2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (J c ) in the as-prepared samples. In particular, the value of J c for the carbon-coated (Mg 1.1 B 2 )Cu 0.05 sample prepared here is even above 1 x 10 5 A cm −2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB 2 bulks or wires with excellent J c , as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.Keywords carbon, homogeneous, nano, density, current, critical, enhanced, temperature, low, doping, formed, significantly, rapidly, grains, mgb2
Disciplines
Engineering | Physical Sciences and Mathematics
Publication DetailsLiu, Y., Lan, F., Ma, Z., Chen, N., Li, H., Barua, S., Patel, D., Shahriar, M., Hossain, A., Acar, S., Kim, J. & Dou, S. Xue. (2015). Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping. Superconductor Science and Technology, 28 (5)
AbstractsHigh performance MgB 2 bulks using carbon-coated amorphous boron as boron precursor were fabricated by Cu-activated sintering at low temperature (