In recent years, the development of electronic chips has focused on achieving high integration and lightweight designs. As a result, pulsating heat pipes (PHPs) have gained widespread use as passive cooling devices due to their exceptional heat transfer capacity. Nevertheless, the erratic pulsations observed in slug flow across multiple channels constitute a significant challenge, hindering the advancement of start-up and heat dissipation capabilities in traditional PHP systems. In this paper, we introduce a flat plate pulsating heat pipe (PHP) featuring adaptive structured channels, denoted as ASCPHP. The aim is to enhance the thermal performance of PHP systems. These adaptive structured channels are specifically engineered to dynamically accommodate volume changes during phase transitions, resulting in the formation of a predictable and controllable two-phase flow. This innovation is pivotal in achieving a breakthrough in the thermal performance of PHPs. We experimentally verified the heat transfer performance of the ASCPHP across a range of heating loads from 10 to 75 W and various orientations spanning 0 to 90 degrees, while maintaining a constant filling ratio (FR) of 40%. In comparison to traditional PHP systems, the ASCPHP design, as proposed in this study, offers the advantage of achieving a lower evaporation temperature and a more uniform temperature distribution across the PHP surface. The thermal resistances are reduced by a maximum of 37.5% when FR is 40%. The experimental results for start-up characteristics, conducted at a heating power of 70 W, demonstrate that the ASCPHP exhibits the quickest start-up response and the lowest start-up temperature among the tested configurations. Furthermore, thanks to the guiding influence of adaptive structured channels on two-phase flow, liquid replenishment in the ASCPHP exhibits minimal dependence on gravity. This means that the ASCPHP can initiate the start-up process promptly, even when placed horizontally.