We demonstrate the use of two-stage dynamic metabolic control to manipulate feedback regulation in central metabolism and improve biosynthesis in engineered E. coli. Specifically, we report the impact of dynamic control over two central metabolic enzymes: citrate synthase, and glucose-6-phosphate dehydrogenase, on stationary phase fluxes. Firstly, reduced citrate synthase levels lead to a reduction in α-ketoglutarate, which is an inhibitor of sugar transport, resulting in increased glucose uptake and glycolytic fluxes. Reduced glucose-6-phosphate dehydrogenase activity activates the SoxRS regulon and expression of pyruvate-ferredoxin oxidoreductase, which is in turn responsible for large increases in acetyl-CoA production. These two mechanisms lead to the improved stationary phase production of citramalic acid enabling titers of 126±7g/L. These results identify pyruvate oxidation via the pyruvate-ferredoxin oxidoreductase as a “central” metabolic pathway in stationary phase and highlight the potential of improving fluxes by manipulating essential central regulatory mechanisms using two-stage dynamic metabolic control.HighlightsDynamic reduction in α-keto-glutarate pools alleviate inhibition of PTS dependent transport improving stationary phase sugar uptake.Dynamic reduction in glucose-6-phosphate dehydrogenase activates pyruvate flavodoxin/ferredoxin oxidoreductase and improves stationary acetyl-CoA flux.Pyruvate flavodoxin/ferredoxin oxidoreductase is responsible for large stationary phase acetyl-CoA fluxes under aerobic conditions.Production of citramalate to titers 126 ± 7g/L at > 90 % of theoretical yield