Abstrak -Metode runtun waktu cocok digunakan ketika akan memeriksa setiap pola data secara sistematis dan memiliki banyak variabel bebas, seperti pada kasus harga minyak mentah. Salah satu penelitian yang memanfaatkan metode runtun waktu adalah integrasi antara Ensemble Empirical Mode Decomposition (EEMD) dan jaringan syaraf berdasarkan algoritma Polak-Ribiére Conjugate Gradient (PCG). Jenis jaringan syaraf menggunakan FeedForward Neural Network (FNN). Namun, FNN memerlukan pengaturan parameter bebas dalam proses pembelajarannya. Sementara, parameter yang sesuai sangat dibutuhkan untuk mendapatkan hasil peramalan yang akurat. Penelitian ini mengusulkan integrasi antara EEMD dan Generalized Regression Neural Network (GRNN). GRNN memiliki keunggulan, yaitu: tidak memerlukan pengaturan parameter dan proses pembelajaran yang cepat. Untuk evaluasi, kinerja metode EEMD-GRNN dibandingkan dengan GRNN. Hasil eksperimen menunjukkan bahwa metode EEMD-GRNN menghasilkan peramalan yang lebih baik dari GRNN. Metode EEMD-GRNN memiliki nilai MSE dan RMSE lebih kecil daripada GRNN. Nilai MSE dan RMSE menggunakan data pengujian untuk WTI berturut-turut sebesar 0,0032 dan 0,0569. Sementara, Nilai MSE dan RMSE menggunakan data pengujian Brent berturut-turut sebesar 0,0017 dan 0,0415.Kata kunci -Peramalan Harga Minyak Mentah, EEMD, GRNN.Abstract -The method of time series suitable for use when it checks each data patterns systematically and has many variables, such as in the case of crude oil prices. One study that utilizes the methods of time series is the integration between Ensemble Empirical Mode Decomposition (EEMD) and neural network algorithms based on Polak-Ribiere Conjugate Gradient (PCG). Type of neural network using Feedforward Neural Network (FNN). However, FNN requires setting free parameters in the learning process. Meanwhile, the appropriate parameters are needed to get accurate forecasting results. This research proposes the integration between EEMD and Generalized Regression Neural Network (GRNN). GRNN has advantages, such as: does not require any parameter settings and a quick learning process. For the evaluation, the performance of the method EEMD-GRNN compared with GRNN. The experimental results showed that the method EEMD-GRNN produce better forecasting of GRNN. Method of EEMD-GRNN has a value of MSE and RMSE smaller than GRNN. The value of MSE and RMSE used test data for WTI successively equal 0.0032 and 0.0569. While the value of MSE and RMSE used test data for Brent successively equal 0,0017 and 0,0415. Beberapa penelitian telah dilakukan dengan menggunakan metode runtun waktu untuk peramalan harga minyak mentah. Salah satu contohnya, penelitian menggunakan GARCH yang dibandingkan dengan model volatilitas [6]. Kemudian, penelitian mengenai integrasi antara ARIMA dan GARCH [7].