With the rapid development of Internet technology nowadays, how to quickly obtain the effective information needed by users has become the key point of the scientific and technological academia. Therefore, various kinds of recommendation algorithms have been invented. Based on the previous research, this paper introduces the most famous and widely used recommendation algorithms among many recommendation systems, which are collaborative filtering and content-based filtering. In this paper, the core ideas and operation principles of the two algorithms are introduced in detail. In addition, by describing the steps of these two algorithms gradually and analyzing their processes step by step, we can accurately analyze and summarize their advantages and disadvantages respectively. And on this basis, the respective areas which they are good at are mentioned. Moreover, this paper points out the shortcomings and limitations that still exist at present, and the direction for further improvement in the future. Finally, at the end of the paper, there are some overall comparation and summation about the two algorithms. And the hot research points of them in the future are discussed.