2022
DOI: 10.3390/w14030466
|View full text |Cite
|
Sign up to set email alerts
|

Improvement of Deep Learning Models for River Water Level Prediction Using Complex Network Method

Abstract: Accurate water level prediction is one of the important challenges in various fields such as hydrology, natural disasters, and water resources management studies. In this study, a deep neural network and a long short-term memory model were applied for water level predictions between 2000 and 2020 in the Phan Rang River Basin of Nihn Thuan located in Vietnam. In addition, a complex network model was utilized to improve the predictive ability of both models for water level prediction at the outlet point of the b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

3
6

Authors

Journals

citations
Cited by 14 publications
(10 citation statements)
references
References 41 publications
0
7
0
3
Order By: Relevance
“…Long short-term memory (LSTM), developed by ameliorating the disadvantages of recurrent neural networks (RNNs), removes unnecessary memories by adding input gates (i t ), forget gates ( f t ), and output gates (o t ) to memory cells in the hidden layer [21,[23][24][25], erasing and deciding what to remember. These three gates have a sigmoid function in common.…”
Section: Long Short-term Memorymentioning
confidence: 99%
“…Long short-term memory (LSTM), developed by ameliorating the disadvantages of recurrent neural networks (RNNs), removes unnecessary memories by adding input gates (i t ), forget gates ( f t ), and output gates (o t ) to memory cells in the hidden layer [21,[23][24][25], erasing and deciding what to remember. These three gates have a sigmoid function in common.…”
Section: Long Short-term Memorymentioning
confidence: 99%
“…If all data from neighboring stations are used without classification, unnecessary data for model learning can lead to the distortion of predictions. [51].…”
Section: Calculation Of Centrality For Cai Stationsmentioning
confidence: 99%
“…구조적 대책의 경우 공학적인 기술을 이용하여 재난위험 지역에 구조물 혹은 시설물을 설치하거나 재난에 노출된 건물을 보강 및 개선하는 방법으로 재난으로 인한 위험(risk)을 낮추 고 수용력(capacity)을 높이는 것이다. 그러나, 자연보전 및 생태 경관 보전 등 생태적 가치가 중요하게 여겨지면서 시행에 어려움을 겪고 있다 (Kang et al, 2007;Kim et al, 2007;Kim, Han et al, 2022). 또한, 구조적 대책은 집중호우로 인해 설계 빈도를 초과하는 재난이 발생하면 줄이지 못하는 문제점과 비구조적 대책보다 상대적으로 비용과 시간이 많이 소요된다 .…”
Section: 서 론unclassified
“…기존의 인공신경망 모형은 데이터의 양이 많아질수록 과적합이나, 예측 성능에 한계가 있었다. 그러나 심층 신경망은 이러한 단점을 보완하고 자료의 양이 많아질수록 성능이 선형적으로 증가하는 장점이 있다 (Kim, Han et al, 2022;Fig. 3).…”
Section: 심층 신경망unclassified