To accurately describe the characteristics of a signal, the feature parameters in time domain and frequency domain are usually extracted for characterization. However, the total number of feature parameters in time domain and frequency domain exceeds twenty, and all of the feature parameters are used for feature extraction, which will result in a large amount of data processing. For the purpose of using fewer feature parameters to accurately reflect the characteristics of the vibration signal, a simple but effective vibration feature extraction method combining time-domain dimensional parameters (TDDP) and Mahalanobis distance (MD) is proposed, i.e., TDDP-MD. In this method, ten time-domain dimensional parameters are selected to extract fault features, and the distance evaluation technique based on Mahalanobis distance criterion function is also introduced to calculate the feature vector, which can be used to classify different failure types. Finally, the proposed method is applied to fault diagnosis of rolling element bearings, and experimental analysis results show that the proposed method can recognize different failure types accurately and effectively with only ten time-domain dimensional parameters and a small quantity of training samples.