Introduction: The formation of co-crystal is widely studied to obtain more favourable physicochemical properties than the pure active pharmaceutical ingredient (API). The co-crystal formation between an anti-fungal drug, fluconazole (FLU), and tartaric acid (TAR) has been investigated and its impact on mechanical properties has also been studied.
Methods: The co-crystal of FLU-TAR (1:1) molar ratio was prepared by ultrasound-assisted solution co-crystallization (USSC) method with ethanol as the solvent. Polarization microscopy was used to observe the crystal morphology. Meanwhile, powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) methods were used to characterise the co-crystal formation. The mechanical properties of the co-crystal, such as flowability and tablet-ability, were compared with pure FLU.
Results: Photomicroscopes revealed the unique crystal morphology of the USSC product was different from the two starting components. The typical PXRD pattern was shown by the USSC product, which indicated the formation of FLU-TAR co-crystal. In addition, the DSC thermogram revealed 169.2°C as the melting point of the FLU-TAR co-crystal, which is between the melting points of FLU and TAR. It indicates that FLU-TAR co-crystal has better flowability and tablet-ability than pure FLU. Conclusion: FLU-TAR co-crystal is one of the alternative solid forms for a raw material in pharmaceutical tablet preparation because it has better mechanical properties than pure fluconazole.