Severe accident analysis for Small Break (SB), Middle Break (MB), and Large Break (LB) Loss-Of-Coolant Accident (LOCA), Station Black Out (SBO), Total Loss-Of-Feed-Water (TLOFW) was performed and effectiveness of Reactor Coolant System (RCS) depressurization strategies of OPR1000 was analyzed using MELCOR 1.8.6 code. Required injection flow rate has been derived using Core Exit Temperature (CET) information obtained from MELCOR calculation and a simple model and corresponding coolability map have been suggested to assist effective operator action. The depressurization strategies using secondary Atmospheric Dump Valve (ADV) for SBLOCA, pressurizer Safety Depressurization System (SDS) for SBO and TLOFW were introduced in 5 min since the initiation of Severe Accident Management Guidance (SAMG). Respective mitigation strategy employed leads to significant delay of the reactor pressure vessel failure and RCS pressure at Reactor Pressure Vessel (RPV) failure was lower than the SAMG target pressure of 2.86 MPa. Thus, possibility of High Pressure Melt Ejection (HPME) and impair of containment building is expected to avoid effectively. Using CET information obtained from MELCOR calculation, a simple model and a coolability map for the required injection flow rate were developed for recovery of core coolability. It is suggested that the coolability map based on MELCOR calculation results may provide decisive and intuitive information to operators for more effective safety management.