2013
DOI: 10.7840/kics.2013.38b.12.954
|View full text |Cite
|
Sign up to set email alerts
|

Improvement of Pattern Recognition Capacity of the Fuzzy ART with the Variable Learning

Abstract: In this paper, we propose a new learning method using a variable learning to improve pattern recognition in the FCSR(Fast Commit Slow Recode) learning method of the Fuzzy ART. Traditional learning methods have used a fixed learning rate in updating weight vector(representative pattern). In the traditional method, the weight vector will be updated with a fixed learning rate regardless of the degree of similarity of the input pattern and the representative pattern in the category. In this case, the updated weigh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
0
0
2

Year Published

2014
2014
2017
2017

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 6 publications
0
0
0
2
Order By: Relevance
“…경계 범위의 테스트: [2][3][4][5][6][7][8][9][10] . 노드 J가 이미 한 번 이상 선택된 경우 기존 방식의 연결강도벡터 갱신에 식 (6)을 사용한다 [2][3][4][5][6][7][8][9][10] .…”
Section: 고속학습(Flunclassified
See 1 more Smart Citation
“…경계 범위의 테스트: [2][3][4][5][6][7][8][9][10] . 노드 J가 이미 한 번 이상 선택된 경우 기존 방식의 연결강도벡터 갱신에 식 (6)을 사용한다 [2][3][4][5][6][7][8][9][10] .…”
Section: 고속학습(Flunclassified
“…    대표패턴의 갱신에 반영한다 [10] . 즉 대표패턴과 입력 패턴의 거리가 멀수록 입력패턴이 대표패턴의 갱신에 참여하는 비율을 적게 하여 과도한 학습을 억제한다 [10] .…”
Section: 새로운 카테고리의 생성unclassified