In this paper, we propose a variable weighted average (VWA) learning method in order to improve the performance of the fuzzy ART neural network that has been developed by Grossberg. In a conventional method, the Fast Commit Slow Recode (FCSR), when an input pattern falls in a category, the representative pattern of the category is updated at a fixed learning rate regardless of the degree of similarity of the input pattern. To resolve this issue, a variable learning method proposes reflecting the distance between the input pattern and the representative pattern to reduce the FCSR's category proliferation issue and improve the pattern recognition rate.However, these methods still suffer from the category proliferation issue and limited pattern recognition rate due to inevitable excessive learning created by use of fuzzy AND. The proposed method applies a weighted average learning scheme that reflects the distance between the input pattern and the representative pattern when updating the representative pattern of a category suppressing excessive learning for a representative pattern. Our simulation resultsshow that the newly proposed variable weighted average learning method (VWA) mitigates the category proliferation problem of a fuzzy ART neural network by suppressing excessive learning of a representative pattern in a noisy environment and significantly improves the pattern recognition rates.