The recycling of waterworks sludge has become a trending issue because it not only solves the problem of difficult disposal but also saves land resources. This paper aimed to provide a new idea for the utilization of waterworks sludge to form ceramsite and to purify sewage. The specific surface area, average pore size, and pore volume of the made ceramsite were 8.15 m2/g, 8.53 nm, and 1.88 cm2/g, respectively. The made ceramsite was applied in a vertical-flow constructed wetland, and the removal efficiency of nitrogen, phosphorus and organic matter in sewage were investigated under the conditions of different start-up periods, hydraulic retention times, matrix filling heights and water quality. The removal rates of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), and total phosphorus (TP) in the constructed wetlands were stable at 70%, 60%, and 79%, respectively. This constructed wetland with a ceramic matrix has certain advantages in the total amount of denitrifying microorganisms, with a proportion of 14.92%. The results prove the feasibility of preparing ceramsite from waterworks sludge and applying it as a matrix in a constructed wetland to purify sewage.