The chemical looping reforming and combustion of methane have attracted increasing interest as processes for clean energy and syngas production, with potential to reduce carbon dioxide emissions. Previous literature on the development of oxygen carriers evidenced the effects that oxygen availability exerts on the selectivity of the oxidation reaction. In the present paper, we evaluate the performance of chromite sand (Chro), cerium dioxide (CeO2), and mixed cerium–copper oxide (Ce–Cu) as oxygen carriers for either reforming or combustion according to their oxygen availability. The oxides are tested in 2 to 5 min reduction intervals in a CH4/N2 mixture (5, 10 and 20% vol.) followed by regeneration in O2/N2 (3, 5, or 21% vol.), with redox cycles conducted either at 850 °C or 950 °C. The obtained rank of selectivity towards complete CH4 combustion is Ce–Cu > CeO2 > Chro. Another relevant finding is the role of the degree of carrier conversion in promoting partial or total oxidation. In particular, the selectivity towards CO2 markedly decreases at increasing carrier conversion, disclosing new strategies for process design and optimization by controlling the carrier conversion degree.