A novel solar light active photocatalyst, TiO 2 /kaolin-graphene carboxyl nanocomposite was synthesized by hydrothermal method for the degradation of cephalosporin antibiotic, cefuroxime sodium. The synthesized photocatalyst was characterized by various analytical and spectroscopic techniques, including Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) thermogravimetry (TG), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL). The prepared TiO 2 /kaolin-graphene carboxyl nanocomposite exhibited efficient photocatalytic degradation of methylene blue (MB) upon illumination with the solar simulator as compared to unmodified TiO 2 . The incorporation of both kaolin and graphene carboxyl was found to immobilize TiO 2 , enhancing the visible light absorption range of TiO 2 . Scavenger study revealed that hydroxyl radicals act as the main active species in the photocatalytic degradation process. The hydroxyl group present on kaolin surface reacts with photo-generated holes to increase the amount of hydroxyl radical, and further the graphene carboxyl plays a role to impede the recombination of photo-generated electron-hole pairs. Furthermore, the synthesized photocatalyst was found to degrade cefuroxime sodium within 90 min of sunlight illumination, indicating that TiO 2 /kaolin-graphene carboxyl nanocomposites would be very beneficial for pharmaceutical waste management through the advanced oxidation process. Mass spectral analysis was also carried out for elucidating the photocatalytic degradation pathway of cefuroxime sodium.