Cathodic plasma electrolytic treatment (CPET) is an emerging surface modification and coating preparation technology. By utilizing plasma discharge induced through electrolysis and the cooling impact of electrolyte, metal cleaning, saturation, and coating preparation are efficiently achieved. In this review, the principle, application, and development of the CPET process are briefly summarized based on the past literature. Detailed insights are provided into the influence of electrolyte parameters (pH, metal salt concentration, and temperature), electrical parameters (voltage, duty cycle, and frequency), and process parameters (electrode area ratio, material, roughness, and deposition time) on plasma discharge and coating formation for metal coatings. The interaction mechanism between plasma and material surfaces is also investigated. Recommendations and future research avenues are suggested to propel CPET and its practical implementations. This review is expected to provide assistance and inspiration for researchers engaged in CPET.