Abstract-In this work, we propose to study and design a coil used to magnetize, by means of a Pulsed Field Magnetization (PFM) process, an inductor of a radial flux superconducting machine with one pair of poles. Each pole contains four similar HTS bulks of 30 mm diameter arranged in a square pattern. The cryostat already exists for this application and the temperature of the HTS bulks can vary from 4.2 K to their critical temperature, in transient state. For a given primary source of energy, here a capacitor bank of 10 kJ (5 mF, 2 kV) is available, the PFM process depends strongly on the value of the coil inductance used to generate pulsed field, because it defines the waveform of the current: peak value and time constant. Thus, 3D modeling of the coil is required in order to be sure that its inductance and the magnetic field produced will provide a full magnetization of HTS bulks. From the practical point of view, we would like to achieve an average magnetization of each pole around 3 T.In this paper, numerical modeling of coils with different number of turns coupled with circuit's equations is achieved. The maximum magnetic field obtained on the HTS bulks and estimated magnetization at the top center of each HTS bulk, are presented and discussed.