The molecular mechanisms underlying photoperiod or temperature control of flowering time have been recently elucidated, but how plants regulate flowering time in response to other external factors, such as water availability, remains poorly understood. Using a large-scale Hybrid Transcription Factor approach, we identified a bZIP transcriptional factor, O. sativa ABA responsive element binding factor 1 (OsABF1), which acts as a suppressor of floral transition in a photoperiod-independent manner. Simultaneous knockdown of both OsABF1 and its closest homologous gene, OsbZIP40, in rice (Oryza sativa) by RNA interference results in a significantly earlier flowering phenotype. Molecular and genetic analyses demonstrate that a drought regime enhances expression of the OsABF1 gene, which indirectly suppresses expression of the Early heading date 1 (Ehd1) gene that encodes a key activator of rice flowering. Furthermore, we identified a drought-inducible gene named OsWRKY104 that is under the direct regulation of OsABF1. Overexpression of OsWRKY104 can suppress Ehd1 expression and confers a later flowering phenotype in rice. Together, these findings reveal a novel pathway by which rice modulates heading date in response to the change of ambient water availability.Flowering time (or heading date) and drought resistance are two major yield traits in crops, especially rice (Oryza sativa). As global climatic change looms, drought has become the biggest abiotic stress to limit crop yields. Breeders have capitalized on naturally occurring genetic variations to improve or maintain crop yield in times or areas of drought by different strategies (Eisenstein, 2013). Manipulation of floral transition has been a promising way to maximize crop yield during dry periods. This strategy has been successful due to extensive identification of genetic loci and elucidation of molecular mechanisms that control flowering time under diverse or unpredictable environments.Heading date in rice is influenced by many environmental cues such as day length (photoperiod), temperature, nutrition, and water availability. Molecular mechanisms that underlie photoperiod regulation of flowering time have already been characterized, probably because day length is more predictable than other environmental factors during seasonal changes. Rice is a facultative short-day plant that flowers earlier in short days (SDs) than in long days (LDs). Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1) are two paralogous genes in rice encoding "florigen" molecules expressed in the phloem of leaves and transported to the shoot apical meristem to promote flowering (Tamaki et al., 2007;