The present work aims to improve the mechanical properties of Epocast 50-A1/946 epoxy via incorporation of alumina nanoparticles using an ultrasonic agitation method. The optimum weight percentage of alumina nanoparticles was determined based on the improvement in the shear and impact properties of the nanocomposites at room temperature and 50 ℃. Accordingly, neat epoxy panels and nanocomposite panels with 0.5, 1.0, 1.5, and 2.0 wt% alumina nanoparticles were fabricated. The shear and thermo-mechanical impact properties of the panels were measured using an instrumented drop-weight impact machine and an Iosipescu shear test fixture, respectively, according to ASTMs D5379 and D7136. The maximum improvement in shear strength and modulus was 10.9% and 8.1%, respectively, for the nanocomposites containing 1.0 and 1.5 wt% alumina nanoparticles. The predicted shear moduli of the nanocomposites agreed well with the measured values with a maximum error of 6.52%. The optimal performance of impact properties was achieved by incorporating 1.0 wt% of alumina nanoparticles. Namely, the maximum impact-bending stiffness, contact force, and absorbed energy were increased by 12.9%, 13.0%, and 23.4%, respectively. The test temperature of 50 ℃ was found to have a negative effect on the impact-bending stiffness and the maximum contact force. On the other hand, the absorbed energy was increased up to 12.1%.