Rubber wood often exhibits dimensional instability during use, which seriously hinders its widespread application. In order to enhance the dimensional stability of rubber wood, a two-step method was employed in this study to modify rubber wood using two plant-derived compounds, namely sucrose and tung oil. Samples treated alone with sucrose or tung oil were also prepared. The water absorption, dimensional stability, and thermal stability of modified and untreated wood were evaluated. The results show that wood samples treated with 30% sucrose and tung oil had excellent water resistance and dimensional stability based on the synergistic effect of sucrose and tung oil. After 384 h of immersion, the 30% sucrose and tung oil group presented a reduction in water absorption by 76.7% compared to the control group, and the anti-swelling efficiency was 57.85%, which was 66.81% higher than that of the tung oil treatment alone. Additionally, the leaching rate of the 30% sucrose and tung oil group decreased by 81.27% compared to the sample modified with the 30% sucrose solution alone. Simultaneously, the 30% sucrose and tung oil group showed better thermal stability. Therefore, this study demonstrates that the synergistic treatment of modified rubber wood by sucrose and tung oil is an eco-friendly, economical, and highly efficient approach with the potential to expand the range of applications of rubber wood products.