IntroductionAction and perception are two inherently linked aspects of human behavior that allow us to understand and interact with our surroundings. The interplay between action production and perception enables humans to act in a number of highly demanding situation such as unusual, novel or unstable environments [1]. Babies interact with their environment in a myriad of different ways such as imitation, selfmotion and observing the examples of others [2][3][4]. These interactions serve to shape not only their knowledge about the world, but also their understanding of the functionality of their bodies.Action performance interacts with action perception, and viceversa. This is reflected in the brain, as both performing and perceiving actions activate similar cortical areas [5]. Previous research has revealed significant interactions between action perception and action execution, and studies have shown that action perception can interfere with action execution reciprocally [6][7][8]. It is particularly insightful to study such interactions in populations with abnormal skeleto-muscular and/or neural development, as in these populations the brain may have adapted differently to handle physical differences, which in turn may influence how affected individuals interact with their surroundings. For example Sinha et al. [9] have shown that individuals with autism spectrum disorder, adapt their sensory input atypically, resulting in diverse behavioral traits. Down Syndrome (DS) is one of the most common genetic disorders (14 per 10 000 live births) caused by the presence of a complete or partial third copy of chromosome 21 (Trisomy 21) [10]. DS is a genetic change that impacts not only intellectual ability, but also motor development and motor control over the lifetime [11,12]. Abnormal brain functioning related to learning has been reveled in a number of studies [13][14][15][16]. In addition to neurodevelopmental abnormalities, corporal abnormalities are also common in DS. These abnormalities are highly related to the impaired motor control of voluntary movements [11,17].Children with DS require more time to learn basic movements. Additionally, as movement complexity increases they achieve gross motor functions at an average age that is almost twice that of typically developed children [18]. However, despite delays in motor development and the control of voluntary movements, the DS population does not exhibit a complete absence of the production of gross motor skills. For instance, individuals with DS are often capable of walking and jumping, as well as fine motor skills and manual dexterity. Examples of functional motor development can be seen when special teaching strategies are implemented [19][20][21][22][23][24]. This demonstrates that individuals with DS are at least somewhat able to adapt to their motor impairments. In more realistic tasks, Latash [11,17] argue that, when confronted with an unexpected or unclear motion situation, individuals with DS choose to act slowly (bradykinesia) during the initiation ph...