Background
For dosimetry, the demand for whole-body SPECT/CT imaging, which require long acquisition durations with dual-head Anger cameras, is increasing. Here we evaluated sparsely acquired projections and assessed whether the addition of deep-learning-generated synthetic intermediate projections (SIPs) could improve the image quality while preserving dosimetric accuracy.
Methods
This study included 16 patients treated with 177Lu-DOTATATE with SPECT/CT imaging (120 projections, 120P) at four time points. Deep neural networks (CUSIPs) were designed and trained to compile 90 SIPs from 30 acquired projections (30P). The 120P, 30P, and three different CUSIP sets (30P + 90 SIPs) were reconstructed using Monte Carlo-based OSEM reconstruction (yielding 120P_rec, 30P_rec, and CUSIP_recs). The noise levels were visually compared. Quantitative measures of normalised root mean square error, normalised mean absolute error, peak signal-to-noise ratio, and structural similarity were evaluated, and kidney and bone marrow absorbed doses were estimated for each reconstruction set.
Results
The use of SIPs visually improved noise levels. All quantitative measures demonstrated high similarity between CUSIP sets and 120P. Linear regression showed nearly perfect concordance of the kidney and bone marrow absorbed doses for all reconstruction sets, compared to the doses of 120P_rec (R2 ≥ 0.97). Compared to 120P_rec, the mean relative difference in kidney absorbed dose, for all reconstruction sets, was within 3%. For bone marrow absorbed doses, there was a higher dissipation in relative differences, and CUSIP_recs outperformed 30P_rec in mean relative difference (within 4% compared to 9%). Kidney and bone marrow absorbed doses for 30P_rec were statistically significantly different from those of 120_rec, as opposed to the absorbed doses of the best performing CUSIP_rec, where no statistically significant difference was found.
Conclusion
When performing SPECT/CT reconstruction, the use of SIPs can substantially reduce acquisition durations in SPECT/CT imaging, enabling acquisition of multiple fields of view of high image quality with satisfactory dosimetric accuracy.