Owing to its unique position within multiple monsoon regimes, latitudinal extent, and complex topography, Vietnam is divided into seven agroclimatic zones, each with distinct rainy season characteristics. Variation in the dominant rainfall system across zones affects the rainfall climatology, the primary water resource for regional crops. This study explores the creation of an agronomic rainy season onset based on high-resolution rainfall data for each agroclimatic zone for applications in an agricultural context. Onset information has huge practical importance for both agriculture and the economy. The spatiotemporal characteristics of zonal onset date are analyzed using integrated approaches of spatial and interannual variability, temporal changes, and estimation of predictability using teleconnection with Niño 3.4 sea surface temperature anomalies (SSTA) for 1980 to 2010. Results suggest that northern and southern zones experience regional onset dates in May, while the central zones experience rainy season onset in late August. The regional variability of rainy season onset is lower in the northern and southern zones and higher in the central zones which are latitudinally extended. The interannual variation in rainy season onset date is found to be approximately two weeks across all agroclimatic zones. The significant negative trend in rainy season onset date is found for Central Coast and South Central Coast zones, suggesting that the onset date shifted earlier for the entire period. In the decadal scale, the zonal mean onset date shifted later in the Northwest zone and earlier in the Central Highlands. Out of the seven climate zones, a significant positive correlation is only noticed in the Central Highlands and South zones between zonal mean onset date and Niño 3.4 SSTA for Dec–Jan–Feb, suggesting the potential of seasonal scale predictability of rainy season onset date with respect to preceding El Niño-Southern Oscillation (ENSO) events.