The increasing demand of the high value ω-3 fatty acids due to its beneficial role for human health, explains the huge need for alternative production ways of ω-3 fatty acids. The oleaginous alga Phaeodactylum tricornutum is a prominent candidate and has been investigated as biofactory for ω-3 fatty acids, e.g. the synthesis of eicosapentaenoic acid (EPA). In general, the growth and the lipid content of diatoms can be enhanced by genetic engineering or are influenced by environmental factors, e.g. nutrients, light or temperature. In this study, the potential of P. tricornutum as biofactory was improved by heterologously expressing the hexose uptake protein 1 (HUP1) from the Chlorophyte Chlorella kessleri. An in situ localization study revealed that only the full length HUP1 protein fused to eGFP was correctly targeted to the plasma membrane, whereas the N-terminal sequence of the protein is only sufficient to enter the ER. Protein and gene expression data displayed that the gene-promoter combination was relevant for the expression level of HUP1, while only cells expressing the protein under the light-inducible fcpA promoter showed a significant expression. In these mutants an efficient glucose uptake was detectable under mixotrophic growth condition, low light intensities and low glucose concentrations leading to an increased cell dry weight. In a second approach, the growth and lipid content of wildtype cells were analyzed in a small 1l photobioreactor. Here, a commercial F/2 medium and a common culture medium, ASP and modified versions were compared. There was neither a significant impact on the growth and lipid content in P. tricornutum cells due to the supplemention of trace elements nor due to elevated salt concentrations in the media. In a modified version of ASP medium, with adapted nitrate and phosphate concentration a constantly high biomass productivity was achieved, yielding the highest value of 82 mg l-1 d-1 during the first three days. This was achieved even though light intensity was reduced by 40%. The differences in biomass productivity as well as the lipid content and the lipid composition underlined the importance of the choice of culture medium and the harvest time for enhanced growth and EPA yields in P. tricornutum.